
rate; Re, Reynolds number; Re = pooU| Cx, drag coefficient of the disks; C.~=4 (~Apydy-i- 
0 

R 
.t'A,o~@)/(P~U~ R~ ; Cp, p r e s s u r e  c o e f f i c i e n t ,  Cp = 2p/(p~oU2~). 
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EFFECT OF VARIATION OF THE PHYSICAL PROPERTIES OF THE GAS 

ON THE STABILITY OF LAMINAR NONISOTHERMAL FLOW 

IN A CHANNEL WITH PERMEABLE WALLS 

V. M. Eroshenko, L. I. Zaichik, and V. B. Rabovskii UDC 536.24 

An investigation is made into the stability relative to small perturbations of 
a quasideveloped gas flow with variable physical properties in a plane channel 
in the presence of heating or cooling. 

In [I] the flow of a gas with variable physical properties was investigated in the entry 
region of a plane channel with permeable walls. The flow stability in a channel with perme- 
able walls has been investigated only for isothermal flow of a constant-property fluid, e.g., 
[2, 3]. We have now analyzed the effect of varying the physical properties of the gas on the 
quasideveloped flow and its stability in the presence of heating and cooling. 

For two-dimensional plane flow the system of equations describing the mass, momentum, 
and heat transfer has the form 

09 _~ Opux + Opu~j __ O, ( i )  
at Ox Oy 

P \ ~ - t - " ~ - - ~ - x  +"'~--DTy ) = -  o~ § tL '  2 - , Ox 

3 \ Ox @ at] s I '  

G. M. Krzhizhanovskii State Scientific-Research Power-Engineering Institute. 
fated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 6, pp. 921-925, June, 1985. 
a~ticle submitted May 21, 1984. 

Trans- 
Original 

664 0022-0841/85/4806-0664509.50 �9 1985 Plenum Publishing Corporation 



[ c~uu ' Ot:u 0uu't :-: 0p 0 [ [Ot6j 
~ l TY--  "= - a T  + - oj  + 7 ; -  . o:< 

+ - ) i  -= - f + ! (3)  ! o..,j 3 ox T ! j "  
Oh Oh cJi~ ,, O ( OT 0 ( OT'I .  

( -{,-Ux ~, u v --  ~ ~ - - -  (4) 

In o rde r  to c o n s t r u c t  a s t a t i o n a r y  s o l u t i o n  of  Eqs. ( 1 ) - ( 4 )  in  the  r e g i o n  of  q u a s i d e -  
ve loped  f low (remote from the  e n t r y  s e c t i o n )  we w i l l  employ the  l o c a l  s i m i l a r i t y  method used 
in [4] to c a l c u l a t e  the  f low in  a c i r c u l a r  tube .  Thus, we take  

uu V,ou u (~;), Ou:~ fl,,~ dU~ - - O!z ~,~ 
= " - u ~ ( t d ) ,  - - = ~ :  Ox 9~, dx Ox 9U6 (5) 

here, for a perfect gas satisfying the Clapeyron-Mendeleev equation of state, the variation 
of the mean velocity U m = pU/pm along the length is equal to 

dU~ pwV~ qw 
dx 9m6 q- CvmTmpm~ (6) 

The first term in (6) describes the variation of the mean flow velocity as a result of injec- 
tion, and the second that resulting from the density changes associated with the heating or 
cooling of the gas (thermal acceleration or retardation). 

Using relations (5) and (6), we reduce_system of equations__ (1)-(4) to ordinary differen- 
tial equations for the relative velocities Uy, u x = UxPw/PU and temperature T = T/Tw: 

d ..... (7) 
dy (puu) -- pux = O, 

d ( ~ d u ~  / - -  ~ d ~ - -  (8) dy \ d!] ]- -Rpuu dy ' t-(R--KcOwQ)Pux+K=O' 

( __~_y ) . . . .  dT pr~ Q~.u- = O. db'd ~ dT - - R P r ~ C s ,  pu u dg" (9) 

The boundary conditions for system of equations (7)-(9) take the form 

-- d~~ ~ --0, g = l  uL=O, u 7 = T = l .  7 = o  d7 - 

The calculations were carried out for air (Pr w = 0.7), the temperature dependences of 
the thermophysical properties being described by power laws: 

=7 '~" ,  ~ = T % , C p = T % w i t h  % = 0 5 ;  n~=0,8;  n~ =0 .1 .  

In Fig. la, b we have plotted the velocity and temperature distributions over the cross 
section of the channel. Clearly, in both the absence and the presence of injection, heating 
results in a fuller, and cooling in a less full velocity profile. This deformation of the 
velocity profile is attributable to the effect of thermal acceleration or retardation of the 
flow. As with a circular tube [4], in the presence of injection with increase in heating 
rate there is a shifting of the velocity maximum away from the channel axis toward the wall, 
which is associated with the acceleration of the light (heated) gas in the boundary region 
under the influence of the negative pressure gradient induced by injection. The effect of 
varying the physical properties on the temperature distribution in the channel is qualitative- 
ly the same for permeable and impermeable walls and consists in the profile becoming less 
full on heating and fuller on cooling, i.e., the opposite of the effect on the velocity dis- 
tribution. 

Let us analyze the stability of the quasideveloped flow described by Eqs. (7)-(9) with 
respect to small two-dimensional perturbations in the hydrodynamic approximation, i.e., with- 
out taking into account the fluctuations of the physical properties due to temperature fluc- 
tuations. From Eqs. (1)-(3) we obtain the equations for the velocity and pressure perturba- 
tions and introduce the stream function for the fluctuation motion 
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Fig. I. Velocity (a) and temperature (b) profiles: 
ous curves) R = 0; broken curves) R = --5. 
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H e r e ,  a s  t h e  l e n g t h  s c a l e  we h a v e  u s e d  6,  and  a s  t h e  v e l o c i t y  s c a l e  PU/Pw. 
t h e  a m p l i t u d e  o f  t h e  v e l o c i t y  p e r t u r b a t i o n s  r i s  w r i t t e n  i n  t h e  f o r m  
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The equation for 

~,vR~ [~ ~.~_ ~)/~ !:_?e~, - ~:~ - - ~ ; -  j + & ~ . . . .  ~ ~ :  dy- ). + 2 ~ (~oom - R)~:: + 

dy ] ~ d-~ ~ c&~(l) + 2 (K~OwQ --- R) ~dux -F R d'~UUdfl'-" dq)d~ = O. 

(10) 

As compared with the usual Orr--Sommerfeld equation, Eq. (i0) includes terms containing 
derivatives of the viscosity and density, and there are also additional terms describing the 
convective transport of the fluctuations in the transverse direction, as a result of injec- 
tion, and in the longitudinal direction, as a result of thermal acceleration (retardation) 
in the course of heating (cooling) and acceleration due to injection. Equation (I0) was 
solved by a differential pivot method [5] with boundary conditions for the symmetrical per- 
turbations 

(D' (0) -- (D"'  (0) = ~ ( l )  = (I) '(1) = O, 

which, as a rule, are the most dangerous from the instability standpoint. 

(6) 
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The stability calculations were carried out on the temperature factor interval 0.7 < 
0 w ~ 1.5 and the injection parameter interval --i0 < R < 0. In Fig. 2 we have plot:ted the re- 
sults of calculating the critical Reynolds number ~nd c--ritical wave number, obtained from 
the neutral stability curves, as a function of the temperature factor. Clearly, in both the 
absence and presence of injection, in the case of heating the critical Reynolds number in- 
creases, which is primarily associated with the greater fullness of the velocity profile of 
the undistrubed laminar flow owing to thermal acceleration. The increase in flow stability 
on heating is consistent with the experimental data for a circular tube with impermeable 
walls [6-8], where it was established that when the gas is heated the laminar regime is pre- 
served at Reynolds numbers substantially exceeding the critical value for isothermal flow. 
As the cooling rate increases we first observe a fall in Re m cr due to thermal retardation 
of the flow after which the destablizing effect of cooling is replaced by a stabilizing ef- 
fect, probably associated, as in the boundary layer [9], with the variation of the viscosity 
over the channel cross section. The critical wave number increases with cooling and intense 
heating, i.e., the flow becomes unstable with respect to shorter-wave perturbations. On the 
whole, the effect of the change in physical properties during heating and cooling on the sta- 
bility of flows in channels with impermeable walls is qualitatively the same. 

NOTATION 

Ux, Uy, longitudinal and transverse velocity components; p, pressure; h, enthalpy; T, 
temperature; p, density; ~, dynamic viscosity; ~, thermal conductivity; Cp, heat capacity; 
~, half-width of the channel; Vw, injection velocity (Vw < 0); qw, heat flux density; pU = 

I pu~d~/6 , mass velocity; e w = Tw/Tm, temperature factor" R = PwVw~/~w, injection Reynolds 
0 

number; Re m = ~/~m, mainstream Reynolds number; ~, wave number; c, propagation velocity of 
the perturbations; ~ = y/~; p = P/Pw; u = ~/~w; ~ = X/%w; Cp = Cp/Cpw; Kc = Cpw/Cpm; K~ = 
~w/~m; Q = qw6/C wNw T ; K = p2w~2/(~-~Pm~w)~P/~X, The subscripts w and m relate to parameters p w 
determined at the wall temperature Tw and the mass-average temperature Tm. 
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